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Abstract5

Decision making under severe lack of information is a ubiquitous situation in nearly every applied6

field of engineering, policy, and science. A severe lack of information precludes our ability to determine a7

frequency of occurrence of events or conditions that impact the decision; therefore, decision uncertainties8

due to a severe lack of information cannot be characterized probabilistically. To circumvent this problem,9

information gap (info-gap) theory has been developed to explicitly recognize and quantify the implications10

of information gaps in decision making. This paper presents a decision analysis based on info-gap theory11

developed for a contaminant remediation scenario. The analysis provides decision support in determining12

the fraction of contaminant mass to remove from the environment in the presence of a lack of information13

related to the contaminant mass flux into an aquifer. An info-gap uncertainty model is developed to14

characterize uncertainty due to a lack of information concerning the contaminant flux. The info-gap15

uncertainty model groups nested, convex sets of functions defining contaminant flux over time based16

on their level of deviation from a nominal contaminant flux. The nominal contaminant flux defines a17

reasonable contaminant flux over time based on existing information. A robustness function is derived18

to quantify the maximum level of deviation from nominal that still ensures compliance for each decision.19

An opportuneness function is derived to characterize the possibility of meeting a desired contaminant20

concentration level. The decision analysis evaluates how the robustness and opportuneness change as a21

function of time since remediation and as a function of the fraction of contaminant mass removed.22
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1 Introduction23

Environmental and earth scientists are frequently required to provide scientifically defensible support in24

decision-making processes related to important ecological problems (e.g. climate change, contaminant mi-25

gration, carbon sequestration, nuclear waste storage, etc. (Harrington and Gidley , 1985; Caselton and Luo,26

1992; Min et al., 2005)). The decisions are often based on analyses of predictions obtained with system mod-27

els representing the physical processes and conditions related to the problem. For example, hydrogeologists28

regularly provide modeling decision support to aid in the selection of contaminant remediation strategies29

(Tartakovsky , 2007). In these cases, the model-based decision support is often driven by model predictions30

of contaminant concentrations at a point of regulatory compliance. However, uncertainties in the model31

predictions (predictive uncertainties) generally complicate the decision analysis. Predictive uncertainties32

result from limits in existing information (information is used here to refer to knowledge and data) about33

(1) governing processes, (2) boundary and initial conditions, and (3) state variables and process parameters.34

The status quo is to estimate probabilistic uncertainties in the physical process model inputs (prior35

uncertainties) and propagate these uncertainties through the physical process model to obtain estimates of36

predictive uncertainties. This approach is commonly utilized in Bayesian decision analysis ((Schwede et al.,37

2008)), and is a sound and justifiable approach when the uncertainty of each combination of model inputs and38

conditions can be characterized probabilistically or by a frequency of occurrence . However, most decisions39

related to environmental remediation frequently include uncertainties due to a severe lack of information,40

and cannot be characterized probabilistically or by frequency of occurrence. These types of uncertainties can41

be considered Knightian uncertainties, after the economist Frank Knight, who distinguished risk, which can42

be quantified in a lottery sense, and uncertainty, which, in his definition, is immeasurable (Knight , 1921).43

Therefore, in general, decision analyses providing the probabilistic confidence of success associated with44

a particular decision are unrealistic and unreliable as the probability distribution functions (pdf’s) of the45

potential events are unknown. In spite of this limitation, estimates for the confidence of success or failure46

of decisions are commonly requested and provided for by these types of decision analyses, even when the47

assumptions required to obtain the probabilities of events are highly questionable (Ben-Haim, 2006).48

Probabilistic attempts to deal with a severe lack of information require invocation of the ”Principle of49

Indifference“ (i.e. an assumption in probability theory that all currently conceivable events are equally prob-50

able). This “Principle” is applied to justify the use of non-informative priors in Bayesian theory. However,51

the validity of this “Principle” in a decision analysis cannot be verified (Ben-Haim, 2006).52

A probabilistic analysis of uncertainties due to a lack of information are brought further into question53
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if the concept of a “collective” advocated by, among others, von Mises (1939), is taken in consideration.54

According to von Mises, probabilities are meaningless outside of a collective. For example, the probability55

that a 40-year-old man may die in the next year will be significantly different than the probability that a56

40-year-old man who smokes will die in the next year, even though the same person can be a member of both57

collectives. Therefore, probabilities are only relevant within the context of a collective, and are meaningless58

when applied to a single element that can be grouped within multiple collectives. In cases of environmental59

remediation under severe lack of information, where the important processes and properties are characterized60

vaguely at best, it is hard to imagine an appropriate definition of a “collective”, not to mention a dataset61

capable of characterizing the probability of success or failure for this “collective”. Applying model-based62

Bayesian decision analyses under severe lack of information require a leap of faith in assuming that the63

collective is a set of predictions produced by system models whose ability to correctly represent all potential64

events cannot be verified due to the lack of information.65

In general, environmental and earth scientists often encounter problems where the lack of information66

is so severe, that characterizing the probability of all possible events is infeasible. For example, contami-67

nant concentration predictions may be highly dependent on infiltration events driven by precipitation and68

snowmelt, ultimately affecting the contaminant mass flux into an aquifer (infiltration is defined as a ground-69

water mass flux at the top of the regional aquifer here; infiltrated water originates on the ground surface70

and some of the groundwater carries the contaminant mass to the aquifer). Statistical characterization of71

infiltration events based on past records often provides poor predictions of the future probabilities of such72

events (Wallis, 1967; Kobold and Sušelj , 2005). The future predictions are additionally complicated when73

the predictive (compliance) period extends for a long period of time (for example, on the order of the millions74

of years in the case of nuclear waste repositories) which requires the consideration of the potential impact75

of climate changes (man-made and natural). For many natural phenomena, including infiltration, a strong76

potential exists to encounter a single extreme event or sequence of less extreme events outside what has been77

observed in the past. Uncertainties of this type are due to a gap in our information (Knightian uncertainties),78

and not an uncertainty related to which event in a set of events with known probabilities will occur.79

The need for non-probabilistic analyses of uncertainty in order to make reasonable environmental man-80

agement decisions has been increasingly recognized. Hipel and Ben-Haim (1999) develop an info-gap decision81

analyses for water treatment facility design given a lack of information concerning the maximum possible82

flow rate. Levy et al. (2000) combine multi-attribute value theory and info-gap decision theory to quantify83

the robustness of policy alternative to ecological info-gap uncertainties. Fox et al. (2007) demonstrate an84
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info-gap approach to calculate the power and sample size in ecological investigations with uncertain design85

parameters and distributional form. McCarthy and Lindenmayer (2007) develop an info-gap decision analy-86

sis to evaluate timber production and urban water supply management alternatives subjected to an info-gap87

uncertainty in fire risk. Strandlund and Ben-Haim (2008) developed an info-gap decision analysis to choose88

between price-based and quantity-based environmental regulation. Hine and Hall (2010) developed an info-89

gap decision analysis for flood management to account for info-gap uncertainties in flood models. Riegels90

et al. (2011) evaluate the effects of info-gaps in hydro-economic model inputs on the selection of water price91

and target value for an ecological status parameter. In this paper, we develop an info-gap decision analysis92

on a contaminant remediation scenario where an info-gap exists concerning the contaminant mass flux into93

an aquifer.94

2 Info-gap theory95

The info-gap theory provides a general theoretical framework for decision analyses. An info-gap decision96

analysis for a specific problem requires three components: (1) model appropriately characterizing system97

behavior, (2) decision uncertainty model consistent with the info-gap theory, (3) decision performance goals98

(required and desired). These components are used to derive immunity functions, robustness and oppor-99

tuneness functions, characterizing the immunity to failure and immunity to windfall success, respectively, of100

alternate decisions.101

2.1 System model102

The system model in an info-gap decision analysis characterizes the system performance based on the alter-103

nate decisions subjected to the ambient uncertainty. For environmental management decision scenarios, this104

will generally be a physical process model characterizing the natural and man-made processes controlling105

critical outputs influencing the decision.106

2.2 Info-gap uncertainty model107

Info-gap uncertainty models rank an information gap by the uncertainty parameter α. The uncertainty108

model is comprised of nested sets of uncertain entities (i.e. parameters, functions, etc. which have info-gap109

uncertainties) ranked by the largest information gap that can be included in the set (Ben-Haim, 2006). This110

approach is in sharp contrast to probabilistic or fuzzy logic approaches to uncertainty, which distribute uncer-111
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tainty across all potential events to define recurrence-frequency or plausibility (Ben-Haim, 2006). Info-gap112

uncertainty models provide less constraints and are intended for cases where lack of information precludes113

the ability to distribute uncertainties across all potential events, or even identify all potential events. Vari-114

ous types of info-gap decision uncertainty models include energy-bound, envelope-bound, slope-bound, and115

Fourier-bound models (Ben-Haim, 2006). The selection and development of info-gap uncertainty models is116

scenario specific requiring few axiomatic constraints.117

2.3 Decision performance goals118

Performance goals in an info-gap decision analysis express a required or desired reward. In environmental119

decision scenarios, a required performance goal is commonly a constant fixed by a regulatory standard (e.g.120

maximum concentration limit; MCL). A desired performance goal is not a regulatory requirement, but may121

entail a more stringent goal than the regulatory standard. For instance, it may be desirable by decision122

makers or stakeholders to meet a stringent health standard that is below the regulatory standard.123

2.4 Immunity functions124

The immunity functions define the immunity to failure (robustness) and immunity to windfall (opportune-125

ness) of alternate decisions. The robustness function defines the maximum horizon of uncertainty (α) where126

failure cannot occur. As we typically lack the information to know the actual horizon of uncertainty, the127

info-gap uncertainty model is an unbounded function of the horizon of uncertainty in general. This can be128

expressed linguistically as129

α̂(q) = max{α : the required performance goal is satisfied} (1)

where q is a vector containing the alternate decisions and α̂(q) is the robustness function.130

The opportuneness function defines the minimum horizon of uncertainty (α) where windfall success cannot131

occur. Large values of opportuneness indicate that large deviations from nominal (large ambient uncertainty)132

are needed in order to enable the potential of exceptional success. Small values of opportuneness indicate133

that a low ambient uncertainty provides the potential for exceptional success. Linguistically, opportuneness134

can be expressed as135

β̂(q) = min{α : the possibility of meeting the desired performance goal exists} (2)
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Figure 1: Contamination remediation scenario diagram

where β̂(q) is the opportuneness function.136

The complimentary nature of robustness and opportuneness are evident. The robustness and opportune-137

ness can be sympathetic or antagonistic in a decision analysis, depending on the particular scenario.138

3 Contaminant remediation decision scenario139

The decision scenario of contaminant remediation presented below is representative of an actual case study140

at Los Alamos National Laboratory (LANL) related to an existing contamination site. A diagram of the141

contaminant spill scenario is presented in Figure 1 and described below. A contaminant spill with known142

mass has been released on the ground surface and is spatially distributed in the soil below the release143

location. The contaminant is known to chemically degrade over time (for example, due to radioactive144

decay or chemical hydrolysis). An aquifer utilized for municipal water supply lies below the contaminated145

soil. A compliance point is located near the spill where regulatory health standards dictate the maximum146

contaminant concentration. Exceeding the regulatory standard will compromise the municipal water supply,147

incur fines from the regulatory agency, and compromise the integrity of those involved in the remediation148

effort. Removing the contaminant from the soil is expensive, and entails risks of exposure to workers149

and redistribution of the contaminant in the environment. A decision analysis is desired to determine150

the robustness of selecting various fractions of the original mass to remove in order to ensure regulatory151

compliance given an info-gap in the contaminant mass flux into the aquifer (contaminant plume source152

strength). The proposed info-gap analysis can be applied to physical process models with different complexity.153

The analysis presented below uses a relatively simple analytical model, which can be considered a first step154

in a tiered process that utilizes more complicated models in subsequent stages.155
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3.1 Contaminant transport model156

An analytical solution describing the two-dimensional advective-dispersive transport of a contaminant within157

an aquifer is (Wang and Wu, 2009)158

C(x, y, t) =
1

4πn
√

DxDy

∫ t

0

I(t− τ) exp
[
−λτ − (x− uτ)2

4Dxτ
− y2

4Dyτ

]
dτ

τ
,

−∞ < x, y < ∞, t > 0, (3)

where C(x, y, t) [ML3] is a contaminant concentration in the aquifer, I(t) [ML−1T−1] is the transient con-159

taminant flux (source strength) at the point x = y = 0 per unit depth of the aquifer, n is the porosity, Dx160

and Dy are the principal dispersion coefficients [L2T−1], λ [T−1] is the first-order constant of decay, and u161

[LT−1] is the pore water velocity. The groundwater flow is along the x-direction. Assuming that the point162

of compliance is located directly downgradient from the plume source along the x axis, we can simplify the163

model by setting y = 0 as164

C(x, t) =
1

4πn
√

DxDy

∫ t

0

I(t− τ) exp
[
−λτ − (x− uτ)2

4Dxτ

]
dτ

τ
. (4)

Let us define an impulse response function,165

h(x, t) =
1

4πnt
√

DxDy

exp
[
−λt− (x− ut)2

4Dxt

]
, (5)

and substitute this into equation 4 allowing the system model that will be applied in the info-gap analysis166

to be defined as167

C(x, t) =
∫ t

0

I(t− τ)h(x, τ)dτ. (6)

The functional form of equation 6 can be used in general to describe the effect of an impulse on a system.168

Therefore, while the application presented here is contaminant remediation with uncertain contaminant flux,169

much of the development of the decision analysis presented here can be applied to other decision analyses170

with analogous uncertainties due to unknown impulse functions.171
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3.2 Contaminant flux info-gap uncertainty model172

The info-gap uncertainty model for the contaminant flux into an aquifer is defined as the potential for173

deviations in the contaminant flux from a nominal value, and can be expressed as174

U(α, Ĩ(t)) =

{
I(t) :

∫ t

0
[I(t)− Ĩ(t)]2dt∫ t

0
Ĩ2(t)dt

≤ α2

}
, α ≥ 0, (7)

where Ĩ(t) is the nominal contaminant flux function and α defines levels of info-gap uncertainty describing175

deviation of the contaminant flux from nominal. Equation 7 defines an info-gap uncertainty model repre-176

senting nested, convex sets of contaminant flux functions I(t). Functions in these sets can contain a single177

extremely large event, a high frequency of relatively smaller events, or any combination thereof, as long as178 ∫ t

0
[I(t)− Ĩ(t)]2dt/

∫ t

0
Ĩ2(t)dt ≤ α2.179

Equation 7 presents an instance of an energy-bound info-gap uncertainty model. Energy-bound models180

have the ability to capture uncertainties in transients, where prior information concerning the potential for181

large deviations or series of small deviation is extremely limited.182

3.3 Contaminant concentration performance goals183

In the current scenario, the required performance goal is fixed by regulatory standards. The performance184

requirement is defined as the regulatory limit on the contaminant concentration (e.g. MCL) at the point of185

compliance as186

C(x′, t) ≤ Cc, ∀ t > 0, (8)

where x′ is a point of compliance (e.g. site boundary, pumping well) and Cc is the critical contaminant187

concentration based on a regulatory standard.188

In decision analyses, frequently, there is a desired performance goal that is not strictly required but189

would be beneficial if met. This allows us to explore the opportunity of achieving this performance given190

alternative decisions. In a contaminant remediation decision scenario, the desired system performance may191

be a recommended contaminant concentration threshold that is less than the regulatory standard. The192

desired performance goal is described as193

C(x′, t) ≤ Cw, ∀ t > 0, (9)
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where Cw is the desired contaminant concentration.194

The performance goals expressed in inequalities 8 and 9 illustrate the fact that uncertainty can be both195

pernicious, causing failure, and propitious, enabling the potential of exceptional windfall success (Ben-Haim,196

2006). For example, the ambient uncertainty is pernicious when making a decision to ensure the performance197

requirement of inequality 8, while it is propitious when making a decision to allow the potential to surpass198

the performance expressed in inequality 9.199

3.4 Robustness function200

Considering the contaminant flux uncertainty model (equation 7) and the performance requirement (equa-201

tion 8), the decision robustness function can be expressed as202

α̂(q, Cc) = max

{
α :

(
max

I∈U(α,Ĩ)

C(x′, t, q)

)
≤ Cc

}
, ∀ t > 0, (10)

where q is the fractional percent of the contaminant mass removed, defined as q = Mr/Mt, where Mr is the203

mass removed at t = 0 and Mt is the total mass released in the environment. The robustness function α̂ is204

dimensionless. More complicated schedules for contaminant removal can also be applied: for example, mass205

removal within a given period of time, or periodically over several periods. The contaminant flux into the206

aquifer and contaminant concentrations in the aquifer will decrease with increasing q, therefore I = f(t, q)207

and C = f(x, t, q).208

Equation 6 can be expressed as the addition of the nominal concentration and the deviation from the209

nominal concentration at location x′ as210

C(x′, t, q) =
∫ t

0

Ĩ(t− τ, q)h(x′, τ)dτ︸ ︷︷ ︸
C̃(x′,t,q)

+
∫ t

0

[I(t− τ, q)− Ĩ(t− τ, q)]h(x′, τ)dτ︸ ︷︷ ︸
C(x′,t,q)−C̃(x′,t,q)

(11)

where the nominal concentration C̃(x′, t, q) is the concentration resulting from the nominal contaminant flux.211

An upper limit can be determined for the second integral in equation 11 by using the Schwarz inequality212

(Weisstein, 2011) as213

(∫ t

0

[I(t− τ, q)− Ĩ(t− τ, q)]h(x′, τ)dτ

)2

≤
∫ t

0

[I(τ, q)− Ĩ(τ, q)]2dτ

∫ t

0

h(x′, τ)2dτ (12)

Using inequality 12 in equation 11 leads to the following inequality:214
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C(x′, t, q) ≤ C̃(x′, t, q) +

√∫ t

0

[I(τ, q)− Ĩ(τ, q)]2dτ

∫ t

0

h(x′, τ)2dτ (13)

Considering the info-gap uncertainty model (equation 7), it is recognized that215

∫ t

0

[I(τ, q)− Ĩ(τ, q)]2dτ ≤ α2

∫ t

0

Ĩ2(τ)dτ. (14)

Substituting this into inequality 13, a maximum concentration at x′ up to uncertainty α can be defined as216

max
I∈U(α,Ĩ)

C(x′, t, q) = C̃(x′, t, q) + α

√∫ t

0

I2(τ, q)dτ

∫ t

0

h2(x′, τ)dτ (15)

Setting the maximum concentration equal to Cc, as defined by inequality 8, and solving for α results in the217

robustness function as a function of time218

α̂(q, t) =
Cc − C̃(x′, t, q)√∫ t

0
I2(τ, q)dτ

∫ t

0
h2(x′, τ)dτ

. (16)

As inequality 8 requires compliance at all times, the robustness function considering all times is219

α̂(q) = min
t>0

α̂(q, t). (17)

where the robustness is dimensionless and defines the maximum fractional error in the actual contaminant220

flux from nominal that still ensures compliance for alternative decisions.221

3.5 Opportuneness function222

Considering the desired performance described by equation 9, a complimentary equation to equation 10 can223

be defined for the opportuneness function β̂, also dimensionless, as224

β̂(q, Cw) = min

{
α :

(
min

I∈U(α,Ĩ)

C(x′, t, q)

)
≤ Cw

}
, ∀ t > 0. (18)

The complimentary nature of robustness and opportuneness is apparent by comparison of equations 10 and225

18.226

In our decision scenario, the opportuneness function quantifies the least level of uncertainty required227

to maintain the potential that C(x′, t, q) will not exceed Cw. This leads to an equation complimentary to228

equation 15 defining the minimum possible concentration up to uncertainty α as229
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min
I∈U(α,Ĩ)

C(x′, t, q) = C̃(x′, t, q)− α

√∫ t

0

I2(τ, q)dτ

∫ t

0

h2(x′, τ)dτ (19)

Setting the minimum concentration equal to Cw and solving for α produces the opportuneness function230

(complimentary to the robustness function; equation 16) as231

β̂(q, t) =
C̃(x′, t, q)− Cw√∫ t

0
I2(τ, q)dτ

∫ t

0
h2(x′, τ)dτ

. (20)

As the performance expressed by inequality 9 is desired at all times, the opportuneness function considering232

all times is233

β̂(q) = max
t>0

β̂(q, t). (21)

where the opportuneness is dimensionless and defines the minimum fractional error in the actual contaminant234

flux from the nominal that maintains the possibility of meeting the desired performance goal.235

4 Contaminant remediation info-gap decision analysis236

The nominal contaminant flux into the aquifer is defined as Ĩ(t, q) = 1000 ∗ (1− q) ∗ exp[−0.05 ∗ t] [kg/m/a]237

and plotted for fractions of contaminant removed q as a function of time since remediation in Figure 2 (a).238

Constraining this estimate is not possible without further field studies or data acquisition. The following239

info-gap decision analysis will evaluate how wrong can our estimate of the contaminant flux into the aquifer240

be and still ensure compliance at various fractions of contaminant mass removal. The associated nominal241

predictions of concentration at the compliance point x′ = 20 m are plotted in Figure 2 (b). It is assumed242

that the critical regulated concentration at x′ is Cc = 25 kg/m3 and that it would be a desirable outcome if243

the concentration did not exceed Cw = 5 kg/m3.244

It is assumed that the parameters of the contaminant transport model (equation 4) are well known and245

with negligible uncertainty compared to the info-gap in the contaminant flux. These parameters are defined246

as Dx = 30 m2/a, Dy = 7 m2/a, n = 0.1, λ = 1 /a, and u = 30 m/a. These values are representative of the247

flow conditions at the LANL site. Extension of the current analysis by incorporation of probabilistic and248

info-gap uncertainties of these parameters is possible (Hipel and Ben-Haim, 1999; Ben-Haim, 2006).249

The robustness function is plotted versus time since remediation for various fractions of contaminant250

mass removed q in figure 3. Robustness functions at a particular time since remediation versus the fraction251
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Figure 2: Nominal contaminant flux into the aquifer (a) and nominal contaminant concentration at the
compliance point (b) over time since remediation for various fractions of contaminant removed q
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Figure 3: Robustness function versus time since remediation for various fractions of contaminant mass
removed q. Note that robustness is plotted on a log scale.
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of contaminant removed are plotted in figure 4 (refer to equation 16. As we are interested in compliance at252

all times, the minimum robustness for each decision q is also plotted as a dotted line in figure 4 (refer to253

equation 17). In our example, robustness represents the maximum fractional error in the nominal contami-254

nant flux that ensures that C(x′, t, q) < Cc (equation 10). For example, a value of α̂ = 1 indicates that the255

fractional error in the nominal can be 100% (i.e. potential deviations from the nominal contaminant flux can256

be as high as twice the nominal contaminant flux), and the associated decision still ensures compliance.257

Plots of the opportuneness functions are presented in figures 5 and 6. In this example, the opportuneness258

function represents the minimum fractional error in the nominal contaminant flux that sustains the possibility259

that C(x′, t, q) < Cw (equation 18). For example, a value of β̂ = 0.1 indicates that the relative error in the260

nominal contaminant flux must be at least 10% to enable the possibility that the concentration will remain261

below the desired performance goal.262

In figures 3, 4, 5, and 6, the relationship between robustness/opportuneness and effort is apparent. In-263

creased robustness and decreased opportuneness is only possible with increased effort and cost (proportional264

to the fraction of contaminant mass removed q). Interesting variations in robustness for given times since265

remediation as a function of q are observed in figure 4, demonstrating that for small values of q, late times266

have greater decision robustness, while for larger values of q, early times demonstrate greater robustness.267

Robustness for all times approach infinity as q → 1, as removing all the contaminant will provide infinite268

robustness (of course, at a potentially unjustifiable cost). In figures 5 and 6, it is clear that the opportuneness269

increases (β̂ decreases) with time and fraction of mass removed. In figures 5 and 6, it can be determined270

that after 30 years, the opportuneness becomes zero for the decision to do nothing (q = 0), while at 90%271

removal (q = 0.9), no uncertainty is necessary to allow the possibility that C(x′, t) < Cw for all times.272

Figure 7 plots the decision robustness (16) and opportuneness (20) functions together. From equations 16273

and 20, the following expression can be derived to illustrate the complimentary relationship between robust-274

ness and opportuneness in the current decision scenario:275

β̂(q, t) =
Cc − Cw√∫ t

0
I2(τ, q)dτ

∫ t

0
h2(x′, τ)

− α̂(q, t), (22)

where it is apparent that as α̂ increases, β̂ decreases. As it is desirable to select an alternative that increases276

α̂ and decreases β̂, these two objectives are sympathetic in this decision scenario. An increase in robustness277

increases the opportuneness.278

Figure 7 can be used by a decision maker to evaluate the implications of the ambient uncertainty on279
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alternative decisions. For example, at values of q less than around 0.04 (removal of 4% of the contaminant280

mass), the decision robustness is zero, indicating that failure to meet compliance (the required performance281

goal) is ensured based on the nominal contaminant flux. It should be noted that if the actual contaminant282

flux is lower than the nominal estimate, failure may not occur for low values of fraction removed. Decisions283

in this range also require the largest potential deviations from the nominal to enable the possibility of284

meeting the desired goal (equation 9) (relative error in the contaminant flux of at least 57%, or β̂ = 0.57,285

at q = 0.04). A decision to remove approximately 6% (q = 0.06) of the contaminant mass will ensure286

compliance (the required performance goal) only if the actual contaminant flux deviates from the nominal287

by less than 1% (α̂ = 0.01), while the corresponding potential for exceptional success will require deviations288

from the nominal of at least approximately 56% (β̂ = 0.56). Deciding to remove over approximately 76%289

(q = 0.76) of the mass ensures meeting the desired goal at zero deviation from the nominal (decisions in290

this range ensure that the concentration will be below Cw based on the nominal contaminant flux), while291

compliance is ensured in this range at increasing potential deviation from nominal. Deciding to remove 50%292

(q = 0.5) of the mass will ensure compliance if the actual contaminant flux deviates from the nominal by293

less than around 39% (α̂ = 0.39), while the corresponding potential for exceptional success will require the294

actual contaminant flux to deviate by at least 39% (β̂ = 0.39). Other decisions can be evaluated similarly.295

Based on Figure 7, the decision makers may want to select a decision in a range where (1) the robustness296

is greater than zero and (2) the opportuneness is greater than zero if there is relatively higher acceptance297

of potential risk (i.e. fraction of mass removal q between 0.1 and 0.75). If decision makers prefer to select298

a decision with relatively lower risk, an alternative decision in the range where the opportuneness is equal299

or very close to zero (q > 0.75) will provide higher immunity to failure. Decisions in the range where the300

robustness is equal or very close to zero (q < 0.1) provide very low immunity to failure, and are potentially301

unacceptable.302

In an actual application, there may be some concept of the cost associated with each q. The relationship303

between the cost and q is not expected to be linear; typically, the cost increases sharply with the increase304

of q. As a result, analogous figures to figures 3 and 4 can be formulated plotting decision robustness versus305

cost. A decision maker can use these plots to determine the cost to achieve different levels of robustness and306

opportuneness. This info-gap decision analysis can be extended to incorporate other info-gap or probabilistic307

uncertainties due to severe lack of information of other model inputs or conditions; for example, information308

regarding the groundwater velocity or the aquifer dispersion in the zone between the plume source and the309

compliance point can be extremely limited.310
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5 Conclusions311

Geoscientists are often confronted with decision scenarios related to environmental management where the312

lack of information precludes the ability to reasonably estimate probabilistic uncertainty models. In these313

cases, it is not possible to evaluate robustness in the context of the probability of exceeding a contaminant314

concentration at a compliance point (Caselton and Luo, 1992). This paper demonstrates an approach that315

can be applied in these cases of severe uncertainty using an info-gap decision analysis. The proposed decision316

making framework can be applied for environmental management of contaminant remediation but also to317

problems such as radioactive waste storage, carbon sequestration, and climate change.318
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